
Fast and Effective Early Termination
for Simple Ranking Functions

Jinrui Gou
New York University

New York, US
jg6226@nyu.edu

Antonio Mallia
Pinecone

New York, US
antonio@pinecone.io

Yifan Liu†
University of California, Los Angeles

Los Angeles, US
bmmliu@ucla.edu

Minghao Shao
New York University

New York, US
ms12416@nyu.edu

Torsten Suel
New York University

New York, US
torsten.suel@nyu.edu

Abstract
Web search engines often perform an initial candidate generation
phase using a fast and simple ranking function, followed by subse-
quent reranking with more expensive rankers. Such simple ranking
functions usually compute the score of a document as the sum
of term-wise impact scores, and they include traditional baselines
such as BM25 and Query Likelihood, as well as some recently pro-
posed learned sparse models based on document expansion and
learned impact scores. In this paper, we explore extremely fast
and highly effective early termination techniques for such simple
ranking functions. Our extensive experiments with a number of
different ranking functions show that our methods achieve very
fast response times on MSMarco V1 and V2 data while maintaining
retrieval quality close to that of a safe and much slower baseline.

CCS Concepts
• Information systems→ Information retrieval.

Keywords
query processing, early termination, learned sparse indexing
ACM Reference Format:
Jinrui Gou, Antonio Mallia, Yifan Liu†, Minghao Shao, and Torsten Suel.
2025. Fast and Effective Early Termination for Simple Ranking Functions. In
Proceedings of the 48th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’25), July 13–18, 2025, Padua,
Italy. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3726302.
3730197

1 Introduction
A lot of research has focused on the efficiency of search engine
query processing, and in particular the processing of disjunctive
†Work done while the author was at New York University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’25, Padua, Italy
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1592-1/2025/07
https://doi.org/10.1145/3726302.3730197

queries over inverted index structures. This has led to many highly
optimized safe and unsafe early termination algorithms that min-
imize the postings in the index that are accessed and scored to
return results. Recent breakthroughs on transformers and other
deep neural networks have resulted in new learned sparse models,
such as Splade [9–11, 14], DeepImpact [21], uniCoil [15], or Tilde
[44], that significantly outperform rankers such as BM25 and query
likelihood and provide strong baselines for candidate generation in
state-of-the-art search systems. These new models directly map to
the quantized inverted index structures used in many engines.

However, due to the different impact score distributions in these
new models, many well-known optimized top-𝑘 algorithms such
as MaxScore [37], WAND [3], and BMW [7, 23, 24] perform poorly
in this new scenario [13, 20, 21]. This has motivated recent work
on finding more suitable algorithms for these models, including
Guided Traversal (GT) [22, 33, 34], Clipping [18], and Seismic [4].

In this paper, we explore a method for fast early termination on
a class of simple ranking functions that covers traditional rankers
such as Query Likelihood and BM25, including when document
expansion techniques such as DocT5Query are applied, as well as
newer learned sparse models such as DeepImpact, DeeperImpact,
and Tilde. Our method follows the approach in [39], where a prefix
index is built that allows score-at-a-time access on terms and term
pairs, with subsequent lookups into a second-tier standard inverted
index to resolve unknown term scores. Our experiments show
that the method achieves a retrieval quality close to an exhaustive
computation across a number of simple ranking functions while
achieving much lower response times than the state-of-the-art.

2 Background and Related Work
Inverted Indexes and Simple Ranking Functions: We assume
a collection of documents 𝐷 = {𝑑0, . . . , 𝑑𝑛−1}. Documents may
have already been expanded with additional terms using document
expansion techniques such as DocT5Query [31] or Tilde [44]. A
quantized inverted index for 𝐷 contains an inverted list for each
term in the collection. An inverted list for term 𝑡 consists of post-
ings, where each posting contains a document ID (docID) and an
impact score that models the relevance of the document to term
𝑡 . Impact scores can be computed in arbitrary ways at indexing
time, including inference via contextualized language models (LMs),
usually quantized to one byte of precision for efficiency.

https://doi.org/10.1145/3726302.3730197
https://doi.org/10.1145/3726302.3730197
https://doi.org/10.1145/3726302.3730197


SIGIR ’25, July 13–18, 2025, Padua, Italy J. Gou et al.

We focus on simple ranking functions [29], where the score of
a document 𝑑 with respect to a query 𝑞 is defined as

∑
𝑡 ∈𝑞 𝑖𝑠 (𝑡, 𝑑)

where 𝑖𝑠 (𝑡, 𝑑) is the impact score of document 𝑑 stored in the in-
verted list for term 𝑡 , We note that this definition includes ranking
functions such as BM25 [35] and query likelihood [43], as well as
recent methods based on learned sparse indexing.

Learned Sparse Models: Recent work has proposed methods
to create inverted index structures using pre-trained LMs; see [2, 6,
11, 12, 14, 15, 21, 31, 32, 42, 44]. One common approach performs
document expansion to address the vocabulary mismatch [2, 6, 12,
21, 31, 32, 44]. The impact scores in the resulting index are then
computed via traditional ranking formulas such as BM25 or inferred
using a specially trained neural network [2, 21, 44], resulting in a
simple ranking function as defined above. Another approach [11,
14, 15] maps both queries and documents into a high-dimensional
but sparse space that can then be indexed using inverted lists; this
leads to query-dependent term weights and is thus not a simple
ranking problem. We defer this extension to future work.

Fast Early Termination Algorithms: There are many opti-
mized algorithms for disjunctive top-𝑘 query processing on inverted
indexes, where the goal is to return the highest scoring 𝑘 documents
containing at least one of the query terms. Safe methods, which
always return the same top-𝑘 results as an exhaustive evaluation, in-
clude MaxScore [37], WAND [3], block-max methods [7, 23, 27, 28],
and the FA and TA algorithms widely used in databases [8]. Many
unsafe methods, not guaranteed to return the same results but often
faster than safe ones, have also been proposed; of particular inter-
est in our context are score-at-a-time methods that sort and access
postings in inverted lists by their term impacts [1, 5, 17, 19, 36, 39].
As observed in [18, 20, 21], many existing early termination tech-
niques are not efficient on the types of score distributions arising in
learned sparse models, motivating our search for a better approach.

Overall, the most closely related previous approaches are the FA
algorithm of Fagin [8], the candidate generation framework in [39],
and the JASS algorithm in [17, 36]. In particular, our work here uses
the same basic approach as [39], but simplifies it and applies it to
the new ranking functions arising from learned sparse models. The
approach in [39] in turn builds on top of the FA algorithm [8], but
adds sorted access to pairs of terms, a different access order, and a
budget-based cutoff in contrast to the safe termination condition
used in FA. Finally, our work is related to the score-at-a-time JASS
method and basically suggests that JASS could be significantly
improved by adding pairs of terms and random lookups.

3 Description of our Approach: SPRAWL
We now describe our method in detail. As discussed, we adapt an
approach in [39], which also builds a two-tier index consisting of a
prefix index with postings for certain terms and term pairs sorted
by impact score, and a standard inverted index as the second tier.
At query time, a certain number of postings from the prefix are
accessed and accumulated, and then lookups are issued for the
missing term scores of the top results. Our method, called Sorted
PRefix Access With Lookups (SPRAWL), works as follows:

At Indexing Time: Build a prefix index by selecting certain
terms and term pairs based on a training query log, deciding for
each how many postings 𝑝 to store in its prefix, and issuing a top-𝑝
conjunctive query for the term or term pair. The resulting up to

𝑝 postings are then stored in the corresponding prefix structure
in order of descending total impact score, where for a term pair
posting we store the docID and both term impact scores.

AtQuery Time:Assign an access budget𝑎𝑏 and a lookup budget
𝑙𝑏 to query 𝑞, and determine the prefix structures relevant to 𝑞, i.e.,
for terms or term pairs contained in 𝑞. Then process 𝑞 as follows:

(1) Select a total of 𝑎𝑏 postings from the relevant prefix struc-
tures based on highest total impact score (i.e., the sum of
two impact scores for a term pair posting), using a heap.

(2) Aggregate the selected postings by docID to obtain partial
document scores, using a hash table.

(3) Perform lookups into the inverted index for the missing term
scores of the 𝑙𝑏 documents with the highest partial scores.
Lookups into each inverted list are performed in sorted order
by docID to optimize performance.

(4) The top results are returned as query results.

The above method follows [39], but with some changes. Instead of
training a posting quality model as in [39], we select prefix struc-
tures at indexing time based on a training log, and select postings
at query time based on impact scores, inspired by recent score-at-
a-time methods such as JASS [17, 36]. Aggregation of postings is
done using a simple hash table instead of a sorting-based approach.
Preliminary experiments showed that these changes had almost no
impact on performance, while significantly simplifying the method.
4 Experimental Results
Data.We evaluate our approach on two widely used MS MARCO
passage collections. The first dataset, referred to as MS MARCO
V1, consists of 8.8 million passages, while the second dataset, MS
MARCO V2, contains 138 million passages.

Ranking Models. To assess the performance of our approach,
we compare several ranking functions that employ different scoring
mechanisms and expansion strategies:

(1) BM25 based on the PISA [25] implementation with parame-
ters 𝑘1 = 0.9 and 𝑏 = 0.4.

(2) DocT5Query: we use the predicted queries available on-
line, using 40 concatenated predictions for each passage, as
recommended by [31]; documents are scored with BM25.

(3) DeepImpact: using DocT5Query document expansions and
learned impact scores as in [21].

(4) DeeperImpact: using Llama 2 document expansions and
improvements to impact score prediction as in [2].

(5) DeeperImpact Tilde: using Tilde [44] instead of Llama 2.

Due to space constraints, we only present a subset of our results.
In most figures and tables, we use DeepImpact as a default baseline
for comparison. Note that our approach currently does not support
methods such as Splade [11] or uniCOIL [15], as these use query
term weights, which our framework does not support.

Evaluation Measures. Our evaluations use multiple metrics to
cover effectiveness and efficiency aspects. We focus on nDCG@10,
recall@1000, and Rank-Biased Overlap (RBO) [30, 40] to capture
different facets of ranking performance, providing insights into
how well our approach ranks the most relevant passages at the top
and how comprehensively it retrieves relevant passages overall. For
efficiency, we measure the mean response time (MRT) to quantify
average query latency, and report speed-ups relative to a strong



Fast and Effective Early Termination for Simple Ranking Functions SIGIR ’25, July 13–18, 2025, Padua, Italy

common baseline, the safe MaxScore implementation in the PISA
toolkit [25], which was also used in previous work on Clipping [18]
and Guided Traversal [22], thus allowing for a fair comparison.

Index Construction: We use Anserini [41] to create indexes
and export them into Common Index File Format (CIFF) [16]. The
compressed inverted index for all approaches was build in PISA [25].
Indexes for MaxScore are compressed with SIMD-BP128 follow-
ing [26], while for SPRAWL the lookup index uses Elias-Fano [38].
We explored various prefix configurations by adjusting the types of
prefixes constructed and the maximum construction depth. The de-
fault settings include a smaller prefix for MSMARCOV1 and a large
one for MS MARCO V2, with prefix sizes slightly larger than in-
verted index size for V1, and smaller than the index for V2. The sizes
of inverted indexes and prefixes vary depending on the document
expansion performed. Detailed configuration settings and imple-
mentations are available at https://github.com/pisa-engine/sprawl.

2000 5000 8000 12000 20000
access budget

0.15

0.20

0.25

0.30

0.35

0.40

0.45

nD
CG

@
10

MaxScore on DeeperImpact
SPRAWL on DeeperImpact
MaxScore on DeepImpact
SPRAWL on DeepImpact

MaxScore on T5-BM25
SPRAWL on T5-BM25
MaxScore on BM25
SPRAWL on BM25

Figure 1: nDCG@10 for 6980 dev queries on different ranking func-
tions, for MS MARCO V1 and with full lookups.

Performance for different Rankers: Figures 1, 2, and 3 show
the nDCG@10, recall@1000, and RBO measures, respectively, for
four different rankers, BM25, BM25 with DocT5Query expansions,
DeepImpact, and DeeperImpact, for different values of the access
budget 𝑎𝑏 on MS MARCO V1 with full lookups. We also show re-
trieval performances for exhaustive methods as horizontal lines.
Behavior is fairly similar for all four ranking functions, with per-
formance very close to the exhaustive baseline for larger values
of 𝑎𝑏. For nDCG@10, even small access budgets around 5000 al-
most match the baseline, while for recall@1000, larger budgets are
needed. Overall our approach works well across a range of simple
ranking functions, especially works well for the type of learned
impact score distributions, such as DeepImpact, where techniques
such as MaxScore and WAND struggle [20].

Multi-Term Structures: One main difference between our ap-
proach and others such as JASS [17, 36] and Fagin’s algorithm [8]
is the use of pairwise score-at-a-time access structures. In Figure 4
we justify this choice by showing results for nDCG@10 on Deep-
Impact, for three cases: (1) only single-term prefix structures, (2)
single-term and pairwise structures, and (3) structures for up to
three terms. To do this, we created a very large prefix index con-
taining sufficiently deep prefixes for all terms, pairs of terms, and
triples that appear in the training trace; thus, in case (3) we allow
much more space for the prefix than in (1) and (2). Our results show
that pairwise prefixes give a significant boost over single terms,
particularly for moderate access budgets, and that triples gives only

2000 5000 8000 12000 20000
access budget

0.70

0.75

0.80

0.85

0.90

0.95

re
ca

ll@
1k

MaxScore on DeeperImpact
SPRAWL on DeeperImpact
MaxScore on DeepImpact
SPRAWL on DeepImpact

MaxScore on T5-BM25
SPRAWL on T5-BM25
MaxScore on BM25
SPRAWL on BM25

Figure 2: recall@1000 for 6980 dev queries on different ranking
functions, for MS MARCO V1 and with full lookups.

5000 8000 12000 20000
access budget

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

rb
o 

(p
hi

 =
 0

.9
9)

SPRAWL on DeeperImpact
SPRAWL on DeepImpact

SPRAWL on T5-BM25
SPRAWL on BM25

Figure 3: RBO vs. exhaustive methods for 6980 dev queries on dif-
ferent ranking functions, for MS MARCO V1 and with full lookups.

minuscule benefits even with much higher space use. Results were
similar for other ranking functions and retrieval measures.

1000 2000 3000 5000 8000 12000 20000
Access budget

0.30

0.32

0.34

0.36

0.38

0.40

nD
CG

@
10

up to single terms
up to pairwise terms
up to three terms

Figure 4: nDCG@10 for 6980 dev queries on DeepImpact, for MS
MARCO V1 with different types of prefix structures.

Limiting Lookups: An important difference to score-at-a-time
methods such as JASS is the use of lookups to resolve missing scores.
Figure 5 shows the effect on nDCG@10 of varying the number of
lookups that are performed, from no lookups, to lookups for the
50% docIDs with the highest partial scores, to full lookups, for
DeepImpact. We see that lookups are crucial for good retrieval
quality, and that full lookups are best. Again, we observed similar
behavior for other ranking function and retrieval measures.

Impact of Query Length: Next, we look at the performance
of our approach for different query lengths. Table 1 compares our
method to MaxScore under DeepImpact ranking. As we see, our
method achieves basically identical retrieval quality for queries up

https://github.com/pisa-engine/sprawl


SIGIR ’25, July 13–18, 2025, Padua, Italy J. Gou et al.

2000 5000 8000 12000 20000
access budget

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
nD

CG
@

10

MaxScore
SPRAWL (full lookup)

SPRAWL (50% lookup)
SPRAWL (no lookup)

Figure 5: nDCG@10 for 6980 dev queries on DeepImpact, for MS
MARCO V1 with different budgets for lookups.

Table 1: nDCG@10, Recall@1k, and Recall@100 for different query
lengths, with DeepImpact as ranking functions.
Query Length 2- 3 4 5,6 7+ total
# Queries 797 1715 1980 1984 504 6980

SPRAWL10𝑘,5𝑘
nDCG@10 0.4559 0.4051 0.3773 0.3555 0.3411 0.3843
Recall@1k 0.9322 0.9417 0.9215 0.9018 0.8681 0.9183
Recall@100 0.9021 0.8569 0.8214 0.7932 0.751 0.8263
MaxScore
nDCG@10 0.4562 0.4052 0.3787 0.3593 0.3508 0.3865
Recall@1k 0.9385 0.9512 0.9477 0.9516 0.9415 0.9482
Recall@100 0.9034 0.8613 0.8345 0.8194 0.7966 0.8419

Table 2: nDCG@10 and recall@1k for BM25 and DeeperImpact with
Tilde expansions on MS MARCO V2, using full lookups.

BM25 Deeper-Tilde
DL21 DL22 DL23 DL21 DL22 DL23

nDCG@10

MaxScore 0.4285 0.2045 0.2056 0.5253 0.4104 0.3418
SPRAWL10𝑘 0.4087 0.2036 0.1961 0.5038 0.4059 0.3247
SPRAWL20𝑘 0.4262 0.2036 0.1945 0.5027 0.4074 0.3277
SPRAWL50𝑘 0.4303 0.2043 0.1954 0.5142 0.4079 0.3328

Recall@1k

MaxScore 0.5782 0.2741 0.3653 0.6035 0.3906 0.4195
SPRAWL10𝑘 0.4461 0.2143 0.2754 0.4452 0.3149 0.3165
SPRAWL20𝑘 0.4938 0.2381 0.3033 0.4836 0.3374 0.3345
SPRAWL50𝑘 0.5257 0.2479 0.3303 0.5235 0.3627 0.3648

to length 4, while there is a slight decrease in quality versus MaxS-
core for longer queries. This is to be expected, as early termination
techniques tend to decrease in retrieval quality or efficiency for
longer queries, due to the increased dimensionality of the problem.

Scaling up to MS MARCO V2: Next, we evaluate performance
on the much larger MS MARCO V2 passages. We look at two rank-
ing functions, BM25 and a version of DeeperImpact that uses Tilde
instead of Llama 2 for document expansion, chosen because LLama
2 would have been very expensive to run on this larger data sets,
while Tilde achieves almost the same quality at much lower costs.

The results in Table 2 for DL21, DL22, and DL23 queries show
that SPRAWL scales well to larger collections. Of course, 𝑎𝑏 and 𝑙𝑏
need to be increased, resulting in increased MRT, as is also the case
for the MaxScore baseline. Again results are better for nDCG@10
than for recall@1000, where there is more of a gap to the baseline.

Efficiency and Comparison to Previous Work: Next, we
compare actual running times, first for different settings of SPRAWL
and then compared to existing state-of-the-art methods.

In Figure 6 we see the MRT of our method for the four ranking
functions on MS MARCO V1, under varying access budgets 𝑎𝑏
with full lookups. MRT ranges from less than 0.5ms to 2.5𝑚𝑠 for

2000 5000 8000 12000 20000
access budget

0.0

0.5

1.0

1.5

2.0

2.5

M
RT

 (m
s)

SPRAWL on DeeperImpact
SPRAWL on DeepImpact

SPRAWL on T5-BM25
SPRAWL on BM25

Figure 6: MRT for 6980 dev queries on different ranking functions,
for MS MARCO V1 and with full lookups.

Table 3: Comparison of SPRAWL to previous optimized methods,
for DeepImpact on Marco v1, using full lookups for SPRAWL.

MRR@10 MRT (ms) Speedup

MaxScore 0.3273 13.63 -
Clipping 0.3273 - 3.2
GT 0.3260 - 4.1

SPRAWL2𝑘 0.3190 0.29 47.0
SPRAWL5𝑘 0.3253 0.63 21.6

Table 4: Comparison of SPRAWL to previous optimized methods,
for BM25 on Marco V2, using full lookups for SPRAWL.

MRR@10 MRT (ms) Speedup

MaxScore 0.0548 35.8 -
Clipping 0.0548 - 1.26

SPRAWL20𝑘 0.0523 3.50 10.2
SPRAWL50𝑘 0.0537 7.33 4.9

this range of 𝑎𝑏, while achieving very good retrieval quality. We
use about 40ns to process a posting from a prefix – slightly more
for term-pair postings and slightly less for single terms – while a
lookup into an inverted list takes between 30 and 80ns, depending
on the distance between accesses into a list. Resolving all missing
scores for one document requires on average between 1.5 and 2
lookups as there may be several missing scores. Overall, in methods
with full lookups, up to two thirds of time is spent on lookups.

We now compare to Clipping and Guided Traversal on both
DeepImpact and BM25 rankingmodels. Table 3 shows results forMS
MARCO v1 using DeepImpact, while Table 4 shows a comparison
with Clipping on MS MARCO v2 using BM25. Both tables presents
speedups relative to the same PISA MaxScore implementation. We
observe that SPRAWL achieves up to an order-of-magnitude faster
retrieval while introducing only minimal reduction in quality.

5 Concluding Remarks
In this paper, we have proposed and evaluated an early-termination
method called SPRAWL for simple ranking functions that achieves
a very good tradeoff between efficiency and retrieval effectiveness.
There are several possibly improvements and extensions that we
plan to pursue. In particular, we plan to extend the method to
models such as Splade and uniCOIL that use query term weights.



Fast and Effective Early Termination for Simple Ranking Functions SIGIR ’25, July 13–18, 2025, Padua, Italy

References
[1] Vo Ngoc Anh and Alistair Moffat. 2002. Impact transformation: effective and

efficient web retrieval. In Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval.

[2] Soyuj Basnet, Jerry Gou, Antonio Mallia, and Torsten Suel. 2024. DeeperImpact:
Optimizing Sparse Learned Index Structures. arXiv preprint arXiv:2405.17093
(2024).

[3] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
2003. Efficient query evaluation using a two-level retrieval process. In Proc.
CIKM.

[4] Sebastian Bruch, Franco Maria Nardini, Cosimo Rulli, and Rossano Venturini.
2024. Efficient inverted indexes for approximate retrieval over learned sparse
representations. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 152–162.

[5] Matt Crane, J Shane Culpepper, Jimmy Lin, Joel Mackenzie, and Andrew Trotman.
2017. A comparison of document-at-a-time and score-at-a-time query evaluation.
In Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining. 201–210.

[6] Zhuyun Dai and Jamie Callan. 2019. Context-aware sentence/passage term
importance estimation for first stage retrieval. arXiv preprint arXiv:1910.10687
(2019).

[7] Shuai Ding and Torsten Suel. 2011. Faster Top-k Document Retrieval Using
Block-max Indexes. In Proc. SIGIR.

[8] R. Fagin, A. Lotem, and M. Naor. 2001. Optimal Aggregation Algorithms for
Middleware. In Proc. SIGMOD.

[9] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse lexical and expansion model for information retrieval.
arXiv preprint arXiv:2109.10086 (2021).

[10] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From distillation to hard negative sampling: Making sparse neural ir models
more effective. In Proceedings of the 45th international ACM SIGIR conference on
research and development in information retrieval. 2353–2359.

[11] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. In Proc. SIGIR.

[12] Mitko Gospodinov, Sean MacAvaney, and Craig Macdonald. 2023. Doc2Query–:
when less is more. In European Conference on Information Retrieval. Springer,
414–422.

[13] Carlos Lassance and Stéphane Clinchant. 2022. An efficiency study for SPLADE
models. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2220–2226.

[14] Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clinchant. 2024.
SPLADE-v3: New baselines for SPLADE. arXiv preprint arXiv:2403.06789 (2024).

[15] Jimmy Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL,
and a Conceptual Framework for Information Retrieval Techniques. Preprint:
arXiv:2106.14807 (2021).

[16] Jimmy Lin, Joel Mackenzie, Chris Kamphuis, Craig Macdonald, Antonio Mallia,
Michał Siedlaczek, Andrew Trotman, and Arjen de Vries. 2020. Supporting
interoperability between open-source search engines with the common index file
format. In Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2149–2152.

[17] Jimmy Lin and Andrew Trotman. 2015. Anytime ranking for impact-ordered
indexes. In Proceedings of the 2015 International Conference on The Theory of
Information Retrieval. 301–304.

[18] Joel Mackenzie, Antonio Mallia, Alistair Moffat, and Matthias Petri. 2022. Accel-
erating learned sparse indexes via term impact decomposition. In Proc. EMNLP.

[19] Joel Mackenzie, Matthias Petri, and Luke Gallagher. 2022. IOQP: A simple
Impact-Ordered Query Processor written in Rust. In CEUR Workshop Proceedings,
Vol. 3480. Rheinisch-Westfaelische Technische Hochschule Aachen, 22–34.

[20] Joel Mackenzie, Andrew Trotman, and Jimmy Lin. 2023. Efficient Document-at-a-
time and Score-at-a-time Query Evaluation for Learned Sparse Representations.
ACM Trans. Inf. Syst. (2023).

[21] Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021. Learn-
ing Passage Impacts for Inverted Indexes. In Proc. SIGIR.

[22] Antonio Mallia, Joel Mackenzie, Torsten Suel, and Nicola Tonellotto. 2022. Faster
learned sparse retrieval with guided traversal. In Proc. SIGIR.

[23] A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. 2017. Faster
BlockMax WAND with Variable-Sized Blocks. In Proc. SIGIR.

[24] Antonio Mallia and Elia Porciani. 2019. Faster BlockMax WAND with longer
skipping. In Advances in Information Retrieval: 41st European Conference on IR
Research, ECIR 2019, Cologne, Germany, April 14–18, 2019, Proceedings, Part I 41.
Springer, 771–778.

[25] Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant indexes and search for academia. In Proc. OSIRRC@SIGIR.

[26] Antonio Mallia, Michał Siedlaczek, and Torsten Suel. 2019. An experimental
study of index compression and DAAT query processing methods. In Advances in
Information Retrieval: 41st European Conference on IR Research, ECIR 2019, Cologne,
Germany, April 14–18, 2019, Proceedings, Part I 41. Springer, 353–368.

[27] Antonio Mallia, Michał Siedlaczek, and Torsten Suel. 2021. Fast Disjunctive
Candidate Generation Using Live Block Filtering. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining.

[28] Antonio Mallia, Torsten Suel, and Nicola Tonellotto. 2024. Faster learned sparse
retrieval with block-max pruning. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 2411–
2415.

[29] Bhaskar Mitra, Corby Rosset, David Hawking, Nick Craswell, Fernando Diaz,
and Emine Yilmaz. 2019. Incorporating query term independence assumption
for efficient retrieval and ranking using deep neural networks. arXiv preprint
arXiv:1907.03693 (2019).

[30] Alistair Moffat, Joel Mackenzie, Antonio Mallia, and Matthias Petri. 2024. Rank-
Biased Quality Measurement for Sets and Rankings. In Proceedings of the 2024
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval in the Asia Pacific Region. 135–144.

[31] Rodrigo Nogueira and Jimmy Lin. 2019. From doc2query to docTTTTTquery.
Online preprint (2019).

[32] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
expansion by query prediction. arXiv preprint arXiv:1904.08375 (2019).

[33] Yifan Qiao, Yingrui Yang, Haixin Lin, Tianbo Xiong, Xiyue Wang, and Tao Yang.
2022. Dual Skipping Guidance for Document Retrieval with Learned Sparse
Representations. arXiv preprint arXiv:2204.11154 (2022).

[34] Yifan Qiao, Yingrui Yang, Haixin Lin, and Tao Yang. 2023. Optimizing guided tra-
versal for fast learned sparse retrieval. In Proceedings of the ACM Web Conference
2023. 3375–3385.

[35] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[36] Andrew Trotman and Matt Crane. 2019. Micro-and macro-optimizations of SaaT
search. Software: Practice and Experience 49, 5 (2019), 942–950.

[37] Howard Turtle and James Flood. 1995. Query evaluation: strategies and optimiza-
tions. Information Processing & Management 31, 6 (1995).

[38] Sebastiano Vigna. 2013. Quasi-succinct indices. In Proc. WSDM.
[39] Qi. Wang, C. Dimopoulos, and T. Suel. 2016. Fast First-Phase Candidate Genera-

tion for Cascading Rankers. In Proc. SIGIR.
[40] William Webber, Alistair Moffat, and Justin Zobel. 2010. A similarity measure

for indefinite rankings. ACM Trans. Inf. Syst. (2010).
[41] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of lucene

for information retrieval research. In Proceedings of the 40th international ACM
SIGIR conference on research and development in information retrieval. 1253–1256.

[42] Puxuan Yu, Antonio Mallia, and Matthias Petri. 2024. Improved Learned Sparse
Retrieval with Corpus-Specific Vocabularies. In European Conference on Informa-
tion Retrieval. Springer, 181–194.

[43] ChengXiang Zhai and John Lafferty. 2009. Statistical Language Models for Infor-
mation Retrieval. Morgan & Claypool Publishers.

[44] Shengyao Zhuang and Guido Zuccon. 2021. TILDE: Term independent likelihood
moDEl for passage re-ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1483–1492.


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Description of our Approach: SPRAWL
	4 Experimental Results
	5 Concluding Remarks
	References

