A Flexible Resource for Top-Weighted Comparisons
Between Sets and Rankings

Alistair Moffat
The University of Melbourne
Melbourne, Australia
ammoffat@unimelb.edu.au

Antonio Mallia

Pinecone Research
New York, United States
antonio@pinecone.io

Abstract

We describe rbstar, a toolkit of software for carrying out mea-
surements when the goal is to determine how similar a system
observation is to a gold-standard reference output. The resource
covers all four combinations that arise when each of observation
and reference can be either an unordered finite set in which ele-
ment ordering is unimportant, or a finite prefix of an arbitrarily
long ranking in which early elements are more important than later
ones. Specifically, the package realizes four “rank-biased” measure-
ment approaches that have been presented in a sequence of papers
over a 15-year span, bringing them together into a single location
with a uniform interface and efficient reference implementations.
The provision of all of rank-biased precision, rank-biased overlap,
rank-biased recall, and rank-biased alignment, with the latter two
recent additions to the family, allows a wide range of measurement
scenarios to be handled in a consistent manner.

CCS Concepts

« Information systems — Retrieval effectiveness; Presentation
of retrieval results; Test collections.

Keywords
Evaluation; system comparison; set; ranking; precision; recall.

ACM Reference Format:

Alistair Moffat, Joel Mackenzie, Antonio Mallia, and Matthias Petri. 2025. A
Flexible Resource for Top-Weighted Comparisons Between Sets and Rank-
ings. In Proceedings of the 48th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR ’25), July 13-18, 2025,
Padua, Italy. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3726302.3730306

1 Introduction

Many measurement contexts involve the comparison of a system
observation and a pre-defined gold-standard reference output to
obtain a numeric score. For example, in information retrieval and

® This work is licensed under a Creative Commons Attribution
By International 4.0 License.

SIGIR °25, July 13-18, 2025, Padua, Italy.

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1592-1/25/07
https://doi.org/10.1145/3726302.3730306

Joel Mackenzie
The University of Queensland
Brisbane, Australia
joel.mackenzie@ugq.edu.au

Matthias Petri
Amazon AGI
Los Angeles, United States
mkp@amazon.com

web search the observation is often a ranked list of documents in
decreasing score order according to some similarity heuristic, and
the reference is typically a set of known-to-be-relevant documents
identified via a separate judgment elicitation process. In this case
the observation is a ranking and the reference is a set, that is, order
is important in the former and absent from the latter; and the
measurement device is a top-focused mechanism such as reciprocal
rank, precision@k for some cutoff depth k, average precision [1],
normalized discounted cumulative gain [4], and so on.

Moffat et al. [7] consider such measurement scenarios in de-
tail, categorizing them into four classes: “set | set”, “ranking | set”,
“set | ranking”, and “ranking | ranking”; where “X | Y” means that an
observation of type X is being measured in the context of a refer-
ence of type Y. Having established this taxonomy, Moffat et al. next
discuss two existing members of the “rank-biased” family: rank-
biased precision (RBP) [6] as a “ranking | set” measurement, and
rank-biased overlap (RBO) [8] as a “ranking | ranking” measurement.
Finally, Moffat et al. describe two new measurements: rank-biased
recall (RBR), a “set | ranking” tool; and rank-biased alignment (RBA)
another “ranking | ranking” facility.

The rbstar (as in rb*) software package that we describe here
provides reference implementations for these four members of the
rank-biased family. A particular feature of our implementations is
the attention paid to tied items in rankings, noting the observations
of Yang et al. [9] and Lin and Yang [5] as to the importance of
handling these consistently and equitably.

2 Types and Functions
In information retrieval, system observations arise as sets or rank-
ings of document identifiers, typically expressed as unique strings.
This section first describes our chosen representations for sets and
rankings, and then provides the details of four functions that com-
pare them according to different modalities.
Representing Sets. Taking a document identifier to be a string,
docid ::= a unique sequence of alphanumerics
we define
set ::= [pos_instances, neg_instances)
where each of

pos_instances ::= [docid*]
neg_instances ::= [docid*]

https://orcid.org/0000-0002-6638-0232
https://orcid.org/0000-0001-7992-4633
https://orcid.org/0000-0002-7817-6140
https://orcid.org/0000-0002-0054-9429
https://doi.org/10.1145/3726302.3730306
https://doi.org/10.1145/3726302.3730306
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3726302.3730306

SIGIR °25, July 13-18, 2025, Padua, Italy.

are lists of non-repeated document identifiers. For example,
s1 =[[D03, D17, D121, [D@2, D13]1]

is a set containing three documents, with two further documents
explicitly labeled as being not members of s1. Either or both of
pos_instances and neg_instances might be empty, and their intersec-
tion must always be empty. Both of pos_instances and neg_instances
are order-agnostic, despite being represented as lists for presenta-
tional purposes, with

s2 =[[D17, D12, D@31, [D13, Do2]]

considered to be identical to set s1. Allowing both explicit specifi-
cation of set membership and explicit set non-membership permits
applications — in particular, in connection with the grels relevance
judgments employed in information retrieval applications — to im-
pose different policies for items whose membership has not been
determined. In particular, non-specification (“not judged at all”)
might be treated differently to the definite non-membership cap-
tured by presence in neg_instances (“judged, and determined to be
not relevant”).

Representing Rankings. A ranking is an ordered list of groups
of equal-priority elements:

group == [docid*]

ranking ::= [group*]
The order of elements within each of the groups has no bearing on
the ranking, but the ordering of the groups does — the first group
in the ranking has the highest priority (that is, contains the most
important items), and the last group has the lowest priority (that
is, least important amongst those items listed), with other unlisted
items potentially having even lower weights.

Groups may not contain repeated document identifiers; all pair-
wise intersections of groups must be empty; and the length of the
ranking is the sum of the length of the groups it contains. A ranking
may contain no groups, and a group may contain no items; in the
latter case the effect is as if the empty group was not present at all.
As an example, the ranking

r1 =[[D17, D12], [De4], [De@3, D13]]

indicates that D17 and D12 are equally ranked in the two highest pri-
ority positions; that D@4 is then the third-highest ranked document;
and that D@3 and D13 are equally ranked in fourth/fifth position.
Elements other than these five might then follow in one or more
groups of strictly lower priority, with any given ranking interpreted
as being the visible prefix of an arbitrarily long sequence of groups
of items. Note that order within groups is unimportant and empty
groups are ignored. For example, the ranking

r2 =[[D12, D171, [De4]1, [1, [De3, D13]1]

is the same ranking as r1. On the other hand, changes that affect
the group memberships or group ordering are important even if
the documents are listed in the same order, meaning that

r3 =[[D12, D171, [D04, De3], [D131]

is not the same ranking as r1 or r2.

We also employ obvious extensions of this notation. In particular,
if Bis a set and R is a ranking, then |B| is the size of B.pos_instances;
|R| is the combined size of all of the groups in R; and the expression

Alistair Moffat, Joel Mackenzie, Antonio Mallia, and Matthias Petri

B\Ris the set of document identifiers that appear in B.pos_instances
but not in any of the groups in R.

Computing Rank-Biased Precision. Given this terminology,
rank-biased precision (RBP), originally defined by Moffat and Zobel
[6], is a “ranking | set” measurement in which a ranking of docu-
ments - the observation, B — is measured relative to a reference set
R of relevance judgments (grels) in the context of a “patience” or
“persistence” parameter 0 < ¢ < 1 to yield a numeric score range:

rb_precision(ranking B, set R, ¢§) — (score, upper) .

The value of score is established by occurrences in B of items in
R.pos_instances, weighted according to their ordinal positions in B
following a geometric sequence with parameter ¢; and upper is es-
tablished by occurrences in B of items in R.neg_instances, weighted
in the same way:

—¢

1
RBP.score «— | —— Z ¢mnk(B,e) (1)
eGR.pos_instances
RBP,upper «—1- ﬂ Z ¢rank(B,e) , (2)
¢

e€R.neg_instances
in which rank(Y,e) yields the ordinal position in ranking Y at
which document e appears, with the first position indexed at 1; and
yields oo if the document is not present in the ranking. (Ties on
ranks are discussed shortly.)

Moffat and Zobel [6] refer to the range between score and upper
as the residual; it quantifies the extent to which the reference set R
is suited to the measurement of B. They suggest that the score be
taken as the value of the measurement (that is, erring on the side of
pessimism) but that the residual also be reported, as a way of being
alert to measurement uncertainty, even if (as is typically the case
in IR) it is assumed that unjudged documents are non-relevant, and
that documents not in pos_instances are members of neg_instances.

Note that in formulating the computation as two sums, one for
score and one for upper, the bounded sum of the infinite sequence
of decreasing weights associated with the elements in the unseen
tail of B (the tail residual [6]) is automatically accounted for as part
of the computed score range.

Computing Rank-Biased Recall. Moffat et al. [7] describe and
motivate a closely related measurement for “set | ranking” contexts:

rb_recall(set B, ranking R, ¢) — (score, upper).

Their rank-biased recall (RBR) has a lower bound computed in an
analogous manner to rank-biased precision:
1-¢

RBR.score «— | ——
D)y

On the other hand, the range between score and upper is computed
differently, with the score imprecision arising in an additive sense
from not knowing where one or more of the pos_instances occur in
the reference ranking R, and noting that the best that can happen
is that they arise immediately after the visible prefix of R:

g{)rank(R,(Z) . (3)

e EB.poL instances

1-¢ |B\R| Risi
RBR.residual = —— * (4
p Zl $)

A Flexible Resource for Top-Weighted Comparisons Between Sets and Rankings

RBR.upper = RBR.score + RBR.residual . (5)

Ties in RBP and RBR. Moffat and Zobel [6] (in connection with
RBP, where the observation B is a ranking) and Moffat et al. [7]
(in connection with RBR, where the reference R is a ranking) pro-
pose that ties in rankings be handled by uniformly dividing the
corresponding positional weights across all of the tied documents
in each group of the ranking. In detail:

o The depth-based weight associated with depth d in any ranking
is wg = (1-¢)¢?1.

e A group of tied items in a ranking Y that spans depths ¢ to b
inclusive share their total depth-based weight equally. That is,
counting depths as if the groups have been linearized into a
single ordering, the effective weight wy , of each item e in the
equal-priority group [t,t+1,...,b] € Y is:

b
Z d=t Wd
b—t+1"
e Items e that do not appear in Y have an effective weight wy . = 0.

WYe =

The RBP and RBR computations then use the effective weights
rather the than depth-based weights; that is, employ wg . for e €
R.pos_instances in the case of RBP (rather than (1 — ¢)¢'“"k(B’e)_l
in Equation 1); and use wg . for e € B.pos_instances in the case of
RBR (rather than (1 — (;5)(;’)"""‘“?"3)_l in Equation 3).

For example, consider the sequence r1 used as an example above,
and suppose that ¢ = 0.5. The depth-based weights attached to
the ranks [1, 2, 3, 4, 5] are thus [0.5, 0.25,0.125,0.0625, 0.03125] re-
spectively. The two tied groups in r1 then mean that the effective
weights become [0.375,0.375,0.125, 0.046875, 0.046875], where (for
example) 0.375 = (0.5 + 0.25) /2. This process retains the |r1|-item
total depth-based weight of 0.96875, and ensures that any RBP or
RBR computation using r1 will yield the same numeric measure-
ment as does the corresponding calculation using r2.

Computing Rank-Biased Alignment. Moffat et al. [7] also de-
scribe rank-biased alignment (RBA) as a “ranking | ranking” mea-
surement, in which both observation B and reference R are rankings:

rb_alignment(ranking B, ranking R, ¢§) — (score, upper).

Rank-biased alignment has much in common with RBP and RBR:

RBA.score = ﬂ Z ¢rank(B,E)/2+rank(R,E)/2 (6)
e€BNR
Moffat et al. [7] give pseudo-code for this computation, including
computing an upper value that includes an assumed infinite tail of
pairwise matched items beyond depth |B U R|. Our implementation
mirrors that sketch.

Ties in RBA. Moffat et al. [7] do not provide guidance in regard
to ties when computing RBA. Our implementation adopts the same
“share the weight equally” approach as was already described in
connection with RBP and RBR. The RBA lower score computation
then makes use of effective item weights in B and R:

1 —_
RBA.score = Td) Z VWB,e - WRe » (7)

e€BNR

with the geometric mean in the “weights” space corresponding to
the two exponent halvings in the “¢ to the power of ranks” space

SIGIR °25, July 13-18, 2025, Padua, Italy.

Initial rankings (used to compute score):
B =1[[be1, D23, De5], [D11]1, [D17, D151, [D12, D16]]
R =T[IDe11, [D11, D@81, [D171, [D19, D15, D201]

Extended rankings (used to compute upper, plus tail sum):
B’ = [[De1, D23, Do5], [D11], [D17, D151, [D12, D161,
[De8], [D19, D201]
R’ =[[Deo1], [D11, De8], [D17], [D19, D15, D201,
[D23, De5], [D12, D16]]

Figure 1: Group-preserving extension of B and R to uniform depth
|B U R|. The blue groups of unpaired items are added as the first
step when computing RBA.upper(B, R). The tail sum ¢!BYRl is then
added, since all further items might exactly match.

employed in Equation 6. That is, an “effective rank” is computed
from the corresponding effective weight of each item in the group
Y[t,t+1,...,b] and then applied to each of the t — b + 1 items in
that group: mnk’Y’e =logy (¢ - wy,e/(1-¢)).

To compute RBA.upper the elements in B \ R are assumed to be
appended to R in B-priority order with any B-tied groups preserved,
forming an augmented sequence R’; and the elements in R \ B are
appended to B in R-priority order with R-tied groups preserved,
to form an augmented sequence B’. Figure 1 gives an example of
what is meant by “priority-ordered group-preserving” appending.
That augmentation allows “best possible” alignment computation
through to depth |B U R|, and then a normal tail residual covers the
possibility of infinite agreement thereafter. That is, RBA.upper(B, R)
is computed as RBA(B’, R”).score + $!BURI,

Computing Rank-Biased Overlap. This measurement is another
that assesses the quality of an observation ranking B relative to a
reference ranking R [8]. If Y7 _; is the first i items from a ranking Y
(and is all of Y when i > |Y]), then RBO is defined as:

rb_overlap(ranking B, ranking R, §) — (score, upper),
where

1-¢ 0 ¢
RBO.score = —— —
$ Z.:l i

12
Webber et al. [8] also provide a closed form for RBO.score:

1-9 lnligs_z(ﬁ?i
i=1

[B1.i N Ryl 8
¢

) ©)
in which m = |[BUR| and X,;, = |B1..m N R1._ml.

The upper bound for RBO is determined by extending B and R
with the items in R \ B and B \ R respectively, as already shown in
Figure 1, taking both to length |B U R|; and then further adding a
tail-sum of ¢!BYRl that assumes that both sequences go to infinity
with matched pairs of like items.

Z T [B1..i N Ryil + Xpm -
=1

Ties in RBO. Webber et al. suggest that ties in the rankings B
and/or R be handled by regarding all items in a group spanning
depths [t,t+1,...,b] as occurring at depth ¢, adjusting other parts
of the computation to match that intention. More recently, Corsi and
Urbano [2, 3] presented a detailed study of ties in connection with
RBO, suggesting that each tied group [f, b] be regarded as requiring

SIGIR °25, July 13-18, 2025, Padua, Italy.

7

python -m rbstar \
--metric RBP --phi 0.80 --perquery \
--observation ./systemX.trec \
--reference ./trec-dl19-passage.qrels

=== Inputs ===

Observation (ranking) : ./systemX.trec

: 43 components
./trec-dl19-passage.qgrels

: 43 components

Measurement type : RBP (ranking | set)

Parameter phi : 0.80

Reference (set)

=== Per-component RBP measurements ===
component score resid upper

1037798 0.1728 ©.0320 0.2048
104861 0.8523 0.0183 0.8705
1063750 0.0020 0.0188 0.0208

=== QOverall RBP measurements ===
system cmpnts score resid upper
systemX 43 0.6295 0.0160 0.6455

Figure 2: A sample rbstar execution computing per-query RBP
scores (¢ = 0.8) for a run from the 2019 TREC Deep Learning track.

a random choice of one of the (¢ — b + 1)! possible permutations,
and that the expectation over all such possibilities be taken. This
latter option is the one provided in our software.

Graded Judgments. The set type presented in this section is bi-
nary, with membership (or, conversely, non-membership) unam-
biguous. However in some measurement contexts set membership
is on a graded scale; for example, a document might be not relevant,
partially relevant, or fully relevant to a particular query. The rbstar
software supports binary thresholding of grels files on input, to
allow (albeit, simplified) use of graded relevance judgments.

3 The Software Resource
We now briefly describe key elements of the rbstar toolkit.

Implementation and Interface. The rbstar suite is written in
Python, and consists of approximately 1000 lines of code. It can be
executed in stand-alone-mode via the command-line, or incorpo-
rated into other software as a Python module.

Outputs and Reporting. Figure 2 shows an example usage. Input
options include the names of the files containing the observations
and the reference data (here, a TREC run file systemX. trec is being
scored relative to a TREC qrels file trec-d119-passage.qrels);
the measurement to be applied; and the parameter ¢. The output
first notes the input specification; then gives per-component mea-
surements (assuming observation and reference are multi-component
inputs, for example, over a set of topics); and then provides the
arithmetic means over all observations.

Alistair Moffat, Joel Mackenzie, Antonio Mallia, and Matthias Petri

Data Validation. It is important that ties in rankings be correctly
recognized and consistently handled [2, 5, 9]. The rbstar input
module validates TREC-format rankings by sorting by decreasing
supplied numeric item score; then comparing that induced ordering
against the supplied integer ranks. If the supplied ranks are consis-
tent with the decreasing scores, including assigned rank values that
span unbroken score ranges and/or single scores that have contigu-
ous associated rank ranges, then the integer ranks are respected
and used to form the tied groups. Or, if all of the supplied ranks
are identical, tied groups are formed based on equality of score at
the precision supplied in the run file; except if all ranks are equal
and all scores are equal, the line ordering in the run file is used and
there are no tied groups formed. If rank-score contradictions are
noted, an error is raised.

Output Options. Output can be generated in text format (Fig-
ure 2); in JSON structured format for input to other downstream
processing tasks; and in IKIgX tabular format for use in printed
reports. Multiple observation files may be specified, in which case
each input system will yield a row in the final output table.

4 Conclusion

We have presented a flexible public software resource - the rbstar
toolkit — for computing a suite of top-weighted comparisons be-
tween pairs of observations and references. In particular, rbstar
unifies all four combinations that arise when observation and ref-
erence can be either a set or ranking, bringing them together into
a single software package. Written in Python, rbstar provides
a command line tool as well as a library interface to allow easy
adaptation to various tasks. We envision rbstar to be of interest
both to information retrieval researchers and also to academics and
practitioners in a wide array of other fields as well — anywhere
observation sets or rankings need to be measured in a top-weighted
manner relative to references that are also sets or rankings.

Acknowledgment. This work was supported by the Australian Re-
search Council’s Discovery Projects Scheme (project DP190101113)
and a Google Research Scholar Grant.

Software. https://github.com/rankbiased/rbstar.

References

[1] C.Buckley and E. M. Voorhees. Retrieval system evaluation. In E. M. Voorhees and
D. K. Harman, editors, TREC: Experiment and Evaluation in Information Retrieval,
chapter 3, pages 53-78. MIT Press, 2005.

[2] M. Corsi and J. Urbano. The treatment of ties in rank-biased overlap. In Proc.
SIGIR, pages 251-260, 2024.

[3] M. Corsi and J. Urbano. How do ties affect the uncertainty in rank-biased overlap?
In Proc. SIGIR-AP, pages 125-134, 2024.

[4] K. Jarvelin and J. Kekalainen. Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Sys., 20(4):422-446, 2002.

[5] J.Lin and P. Yang. The impact of score ties on repeatability in document ranking.
In Proc. SIGIR, pages 1125-1128, 2019.

[6] A.Moffat and J. Zobel. Rank-biased precision for measurement of retrieval effec-
tiveness. ACM Trans. Inf. Sys., 27(1):2, 2008.

[7] A.Moffat, J. Mackenzie, A. Mallia, and M. Petri. Rank-biased quality measurement
for sets and rankings. In Proc. SIGIR-AP, pages 135-144, 2024.

[8] W. Webber, A. Moffat, and J. Zobel. A similarity measure for indefinite rankings.
ACM Trans. Inf. Sys., 28(4):20.1-20.38, 2010.

[9] Z.Yang, A. Moffat, and A. Turpin. How precise does document scoring need to
be? In Proc. Asia Info. Retri. Soc. Conf., pages 279-291, 2016.

https://github.com/rankbiased/rbstar

	Abstract
	1 Introduction
	2 Types and Functions
	3 The Software Resource
	4 Conclusion
	References

