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Abstract

Vector databases enable semantic search over
large, dynamic datasets, supporting complex
queries that combine vector similarity with meta-
data constraints. They are increasingly used in
retrieval-augmented generation (RAG) systems,
where accurate filtering over metadata – such as
document type, user context, or recency – is es-
sential to response quality. In serverless settings,
where compute and storage are fully decoupled,
this becomes especially challenging: data is con-
tinuously inserted and deleted, and metadata may
be updated independently of the vector index, yet
filters must be applied accurately and efficiently
at query time.

This paper presents the design of metadata fil-
tering in Pinecone’s serverless vector database,
which achieves high accuracy by integrating fil-
tering into the vector retrieval path. Our architec-
ture leverages immutable vector slabs organized
in an LSM-tree structure in object storage, with
stateless, on-demand executors that require novel
coordination mechanisms to maintain correctness
without tight coupling. We formalize accuracy
through exact filter recall metrics and analyze two
fundamental filter interaction paradigms: ad-hoc
application versus pre-computed filter representa-
tions. We present results of filtered ANN search
over a public filtered-search dataset (YFCC), as
well as data from a production customer with cate-
gorical and numeric fields, demonstrating scalable
performance while maintaining exact filtering ac-
curacy.
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1. Introduction
Vector databases have emerged as critical infrastructure
for modern AI applications, enabling semantic search over
large-scale datasets through approximate nearest neighbor
(ANN) algorithms. These systems support complex queries
that combine vector similarity with metadata constraints,
powering applications from recommendation systems to
retrieval-augmented generation (RAG) where contextual fil-
tering is essential for response quality. The vector database
landscape is broadly divided between open-source solu-
tions and managed services, each with distinct advantages.
Open-source ANN packages, with FAISS (Douze et al.,
2024; Johnson et al., 2019) being a primary example, offer
flexibility and customization, allowing developers to tailor
the system to specific use cases and maintain full control
over which algorithm is used as well as its hyperparame-
ters. However, they require significant operational overhead,
from managing cluster scaling and data durability to optimiz-
ing performance across diverse workloads. Managed vector
database services, in contrast, abstract away operational
complexity while providing enterprise-grade reliability, se-
curity, and performance guarantees. Pinecone (Pinecone
Systems, Inc., 2024a) represents this service-oriented ap-
proach, focusing on delivering high accuracy and reliability
across thousands of simultaneous use cases with varying
data characteristics, query patterns, and scale requirements.
This multi-tenancy constraint introduces unique challenges:
the system must maintain consistent performance and ac-
curacy across diverse workloads while providing strong
isolation and reliability guarantees. In this paper, we present
Pinecone’s approach to metadata filtering in serverless vec-
tor databases, where the challenge of maintaining high accu-
racy becomes particularly acute. In serverless architectures,
compute and storage are fully decoupled, data undergoes
continuous mutations, and metadata may be updated inde-
pendently of vector indices. Yet applications demand high
filtered-ANN accuracy, as the filters are many times crucial
to the business logic and/or functionality of the downstream
application. We focus on the interaction patterns between
filters and ANN algorithms, and identify key challenges for
future research in this rapidly evolving field.
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2. Pinecone’s Serverless Vector Database
Let X ⊆ Rd be a set of n vectors with a fixed and finite
dimension d. In the classical problem of vector search, we
are interested in finding the closest k vectors to a given
query vector q ∈ Rd. The closeness between two vectors is
chosen according to the application, where cosine similarity
and Euclidean distance are popular choices.

Pinecone’s new serverless architecture (Pinecone Systems,
Inc., 2024b) manages thousands of production-grade ANN
indexes1. It is based on several key components:

Index partitioned into slabs. Every set of vectors is parti-
tioned into non-overlapping parts called slabs. Each
slab contains, in addition to the vectors, an internal
index, which helps answering queries fast, as well as
a metadata index, which takes care of processing the
metadata filters. When a search query comes in, it is
sent to all slabs, and results are merged before returned
to the user. A slab is illustrated in Figure 1.

Slabs are immutable. Slabs live in blob storage, and are
assigned into levels. When new writes arrive, new
slabs are generated and added to level 0. A compaction
process runs in the background and merges smaller
slabs into larger ones (e.g. slabs from level 0 into a
larger slab in level 1 etc), in order to keep the overall
number of slabs small. Deletions and updates are man-
aged via a tombstones mechanism, which has its own
compaction process, also running in the background.
This is an adaptation of the classical LSM structure
(O’Neil et al., 1996) for the vector search problem. The
slab structure is illustrated in Figure 2.

Slabs may have different ANN algorithms. Smaller
slabs are written and re-written multiple times by the
compaction process, so their index is built fast using
a random projection algorithm(Ailon & Chazelle,
2009). Larger slabs use more sophisticated indexing
algorithms, such as InVerted Files (IVF), product
quantization (PQ) (Jégou et al., 2011), as well as
graph algorithms such as HNSW (Malkov & Yashunin,
2020). These algorithms are slower to build compared
to the random projection algorithm, but allow much
faster searches, especially for larger datasets.

1In pinecone terminology, an index is a collection of vectors,
logically partitioned into namespaces. Vector insertions / deletions,
as well as search queries are always addressed at a specific names-
pace. In this paper we will simplify matters and assume only a
single namespace.

Figure 1. A single slab, containing the data (raw vectors), index
(e.g. PQ codes and IVF centroids), and a metadata index for
handling metadata filters. A slab also contains additional data, e.g.
for mapping between global ids and slab-local vector ids, stored in
an additional header.

Figure 2. Slab structure in Pinecone’s serverless vector DB. New
vectors form new small slabs, which are merged in the background
to larger slabs in lower levels.
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3. Metadata Filtering
3.1. Filtering model

The vector database contains, in addition to each vector,
metadata, in the form of (key,value) pairs. The values can be
(string) categories, or floating point numbers. For example,
in an e-commerce application, where vectors represent items
in a catalog for similarity search, the metadata may contain
items such as price and product category. For example:

{"price": 10.0, "category": "toys"}.

Queries are comprised of the query vector as before, in
addition to a filter expression that restricts the set of vectors
in the index. For example:

{"price": {"$lte": 20.0},
"category": {"$in": ["toys", "electronics"}}}

represents a filter that restricts the price of the prod-
uct to be ≤ 20, and the category to be either toys or
electronics. In general, filters may be more complex,
with and,or operators. The full specification of the filtering
language pinecone supports is available online2.

3.2. Measuring search accuracy

When searching for the k-closest matches without filters,
ANN accuracy is typically measured using Recall@k, de-
fined as the fraction of matches returned by the search index,
out of the ground truth set: the top-k true closest matches
(according to the exact similarity metric). In the filtered
setting, the definition is similar, where now the ground truth
is a set of closest vectors in the set, subject to the filter
constraint. Note that the ground truth set may now contain
fewer than k matches, in cases where there are not enough
vectors in the set that match the filter.

3.3. Filtering architecture

During the ANN search process, there are mainly two ways
to interact with the filter bitmap:

Predicate access. Here, given a vector and its metadata, re-
turn true,false. The predicate output is then used
in the search process. This straightforward approach is
simple to implement, but in many cases turns out to be
slower than the next approach.

Precompute a match list. Given the filter expression,
compute the list of all matching vectors. When possi-
ble, this is the preferred approach3. Moreover, even if

2https://docs.pinecone.io/guides/search/
filter-by-metadata

3In more complex filtering models, e.g. regex matches on text,
this is harder to achieve.

the search algorithm only uses predicate access to the
filter, pre-computing the list of matches often makes
repeated predicate computations faster.

In the pinecone architecture, we precompute the list of
matches for the filter. As mentioned in the previous sec-
tion, each slab has data structure called a metadata index,
which converts the metadata filter from a filter expression
into an explicit representation of the vector ids that can be
considered in this slab. That list of vectors is represented in
a tightly compressed form – a bitmap. The bitmap allows
not only fast predicate evaluations (e.g. “does vector id 123
match the filter”), but also direct iterator access to all the
vector ids that match the filter.

As mentioned above, every slab (subset of an index) may
use a different indexing algorithm. Next, we survey the
main approaches we use for the different algorithms.

3.4. Pre-filtering for small slabs.

For smaller slabs, we use compressed vector approaches
(e.g. PQ or random projections), where for every vector we
store a compressed representation. The compressed repre-
sentations are typically stored in the memory of the nodes
that serve the queries, and allow fast point-reads into them.
So in query time, we iterate over the ids of the matching
vectors, and only scan their compressed representations in
order to compute the approximate distance to the query. In
order to maintain high search recall, we typically keep more
than the required k vectors in a heap-like structure, and re-
rank these based on a more accurate vector representation,
which typically resides on disk.

3.5. Filters and IVF indexes

For larger slabs, we may use an indexing algorithm such
as IVF, where the vectors in the slab are partitioned into
clusters based on cetroids (e.g. using the well-known k-
means algorithm for finding the centroids). In query time,
we typically find the closest nprobe clusters, and scan
(”probe”) only the vectors only in these clusters. The pro-
cess is illustrated in Fig. 3. Within the selected clusters, we
scan the compressed representation (e.g. PQ) for all the
vectors. Tuning nprobe in order to control the tradeoff
between latency and recall is typically done by hand, with
representing datasets.

Simple application of filtering in IVF usually does not work.
When filters become more strict, leaving fewer matching
vectors, the accuracy generally drops. This is illustrated in
Fig. 4a, where 50% of the vectors are filtered out, and the
recall drops. When 90% of the vectors are filtered out (see
Fig. 4b), fewer vectors from the ground truth set remain
in the set of scanned vectors, and the recall becomes even
lower, and the search results are unusable.
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In order to make IVF-type indexes compatible with filtering
across all selectivity ranges, we make several key modifica-
tions to the IVF query process, based on the filter.

IVF bypass. If the filter is very restrictive, matching less
than some prescribed threshold of vectors, we skip
the IVF process altogether, and scan all the matching
vectors. The latency is controlled by the threshold, and
the recall remains high, by design.

Global scan fraction. Instead of choosing a number of
clusters to scan in advance (a.k.a. nprobe), we
choose a scan fraction (e.g. 0.1), and keep scanning par-
titions until their total size covers at least this amount
of vectors from the slab. The reason is that the clusters
in IVF are usually not very balanced (there are ways
to encourage this but at the expense of accuracy). We
want that if, for some query, the first 5 clusters turn out
to be small, then keep scanning more clusters. And on
the other side of the spectrum, if for a query the first
few clusters are already much larger than average, then
the recall improvements from scanning more clusters
is minimal.

Adaptive scan fraction. We adapt the scan fraction accord-
ing to the filter selectiveness. For instance, if we see
that 50% of the vectors are filtered out, then we in-
crease the scan fraction for that query. This process is
illustrated in Figures 5a and 5b. The increase mecha-
nism is designed empirically. We have found the that
the following form for the scan fraction is effective:

scan fraction = f0 · σ−α,

where σ is the filter selectivity, and f0 is the scan frac-
tion that applies when there is no filter. The positive
parameter α is chosen empirically.

Minimal matches. To account for edge cases, we also im-
pose a minimal number of matching vectors that must
be scanned.

3.6. Filters and graph indexes

Graph-based ANN algorithms have become increasingly
popular, including HNSW (Malkov & Yashunin, 2020),
DiskANN (Subramanya et al., 2019) and other variants.
Integrating filters with a graph index has always been a chal-
lenge, since applying the filter during navigation typically
harms the connectivity of the search graph, so it needs to
be carefully tuned. Some authors attempted to incorporate
the metadata into the graph build process, e.g. Filtered-
DiskANN (Gollapudi et al., 2023). However, this approach
does not extend to general filter models, where the filters are
more complex and/or cannot be characterized in advance.
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Figure 3. Standard IVF ANN search without filters. Red star:
query point. Squares: centroids of each cell. In the search process,
we scan the nprobe=4 closest clusters. In this example, the top-k
points (marked in green) are indeed within the searched clusters,
resulting in good recall.

Recently, methods that are so-called predicate-agnostic have
been proposed (Patel et al., 2024), where the graph is built
by artificially increasing its density using different methods.
In this method, the filter is applied many times during the
navigation process.

One approach that we have found to work robustly enough
is to not use the filters in the initial navigation process: first,
search for the closest point, and from that point, continue
scanning until enough points that match the filter have been
accumulated. This is the approach used, for instance, in
the p2 type pod4. As a reminder, the pod-based vector
database is different than the serverless one, where the graph
is always kept in memory. This makes the graph algorithm
a good choice only for some use cases, typically high QPS
where a server is always kept running, and more care is
needed when planning the size of the server against the
expected load.

Improving filters for graph indexes in a robust manner for
a serverless architecture is a topic of active research in the
community, as well as within Pinecone. We will elaborate
on the specific research questions at the end of the paper.

4https://www.pinecone.io/blog/
hnsw-not-enough/
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(a) 50% of the vectors are filtered out. Mild drop in recall, as
some of the true nearest neighbors (green points) are outside
the scanned area.
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(b) 90% of the vectors are filtered out. Large drop in re-
call, as many of the true nearest neighbors fall outside the
scanned area.

Figure 4. Naive IVF with filtered ANN. Recall drops as the filters
become more selective.
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(a) 50% of the vectors are filtered out. nprobe increased
from 4 to 7. Recall stays high.
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(b) 90% of the vectors are filtered out. nprobe increased
from 4 to 45. Recall stays high.

Figure 5. Adaptive IVF with filtered ANN. No recall drops, regard-
less of the filter.
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4. Experimental results
We present detailed recall results of two indexes. In this
benchmark, we are mostly interested in the recall for a broad
range of selectivity values.

4.1. Datasets

We benchmark two different datasets. The first one, denoted
YFCC, is the formal dataset for the filter track in the 2023
BigANN competition (Simhadri et al., 2024). It comprises
of 10M 192-dimensional vectors, representing images em-
bedded with a variant of the CLIP model. Every vector is
attached to several tags, representing words in the descrip-
tion of the image, as well as other image categories, such
as camera model and the country. The queries represent
image embeddings (for image similarity search), and the
metadata filter is one or two tags that must appear in the
vector tags. The filter selectivity is spread uniformly (in log
scale) between 10 vectors all the way to around 2M vectors.

The second dataset is based on data from a pinecone cus-
tomer, comprising of 35M vectors in a search application.
The metadata includes both categorical values, as well as
numerical values. The query set is based on actual produc-
tion search queries. The filter uses a combination of $in
operation for a categorical field, as well as a range filter on
a numeric field. The query selectivity in this representative
query set is dominated by a single type of filter (> 60%),
with selectivity of around 18%. The dataset also contains
more restrictive queries. See Table 1 for more details about
both datasets.

4.2. Benchmark setting

For both datasets, we uploaded them into a pinecone server-
less index in the eu-west AWS region. We used the bulk
import capability5, which allows uploading large datasets
from blob storage. Queries were sent sequentially using the
python SDK6.

The pinecone indexes are tested with their default settings,
without any internal or external modification.

4.3. Results

For YFCC, the mean recall@10 was 0.989. Figure 6 shows
that the recall stays high for all ranges of selectivity, without
a drop in either extremes of the selectivity spectrum. The
internal query latency (excluding round-trip time to the
client) was around 20ms. The latency was measured on a
second of two subsequent runs, to make sure that slabs are

5https://docs.pinecone.io/guides/
index-data/import-data

6In the camera ready version, we will share code and dataset
for reproducing the YFCC experiment.

loaded to the executor (a.k.a. warm slabs).

Figure 6. YFCC dataset: Recall@10 vs. query selectivity. For
each selectivity range, we show the mean and variance of the recall
per query.

For the customer dataset, mean recall@100 was also high:
0.986. Figure 7 shows recall@100 across selectivity ranges
for the customer dataset. For the dominant selectivity value,
the mean recall was the lowest, around 0.981 with small
variance. Overall, the recall remained extremely high. The
internal search latency was around 75ms. The reasons for
the increased latency are (1) the bigger size of the dataset,
and (2) the more complex filter (range filter).

Figure 7. Production dataset: Recall@100 vs. query selectivity.
For each selectivity value in the query set, we show the mean and
variance of the recall per query. A large number of queries have
the same filter, with around 18% selectivity.

5. Summary and Future Work
We reviewed Pinecone’s latest serverless architecture, fo-
cusing its metadata filtering capabilities. We described two
benchmarks of datasets in the 10M vector scale, with differ-
ent filtering characteristics. For all cases, the search accu-
racy, measured in recall, remained extremely high ( 98%).
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Dataset Dimension Similarity Top k Vectors Queries Query Selectivity[%]
min p10 p50 p90 max

YFCC 192 Euclidean 10 10M 1000 0.0006 0.002 0.14 7 19
Customer data 768 Cosine 100 35M 100 0.07 1.7 17.8 17.8 17.8

Table 1. Dataset and query statistics

For future research, we would point out the topic of robust
designs of graph ANN algorithms that support filters, both
metadata aware and agnostic. For example, given a simple
filter scenario of m categories, known in advance, how can
we design a graph algorithm to answer effectively queries
with filters on the intersection of categories?
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